Citation
Catégorie
Tag – étiquette
Auteur
Info



nb max de mots
nb min de mots
trier par
Dictionnaire analogique intriqué pour citations et extraits. Recherche mots ou phrases tous azimuts.  Aussi outil de réflexion communautaire. EXEMPLESPunchlinesChainesHumourRéparties, etc. ATTENTION, faire un RESET après  une recherche complexe... Lire la suite >>
Résultat(s): 2
Temps de recherche: 0.0336s

évolution technologique

En effet, l’histoire de l’humanité est constituée par des systèmes techniques successifs, qui ont des durées de vie de plus en plus courtes et des aires de diffusion de plus en plus vastes. Ces systèmes techniques, à chaque fois qu’ils mutent, créent des désajustements entre le système technique et la société.

Auteur: Gille Bertrand

Info:

[ exponentielle ]

Commenter

Commentaires: 0

Ajouté à la BD par miguel

évolution technologique

Intelligence artificielle ou stupidité réelle ?

Bien que le battage médiatique augmente la sensibilisation à l'IA, il facilite également certaines activités assez stupides et peut distraire les gens de la plupart des progrès réels qui sont réalisés.
Distinguer la réalité des manchettes plus dramatiques promet d'offrir des avantages importants aux investisseurs, aux entrepreneurs et aux consommateurs.

L'intelligence artificielle a acquis sa notoriété récente en grande partie grâce à des succès très médiatisés tels que la victoire d'IBM Watson à Jeopardy et celle de Google AlphaGo qui a battu le champion du monde au jeu "Go". Waymo, Tesla et d'autres ont également fait de grands progrès avec les véhicules auto-propulsés. Richard Waters a rendu compte de l'étendue des applications de l'IA dans le Financial Times : "S'il y a un message unificateur qui sous-tend la technologie grand public exposée [au Consumer Electronics Show] .... c'est : "L'IA partout."

Les succès retentissants de l'IA ont également capturé l'imagination des gens à un tel point que cela a suscité d'autres efforts d'envergure. Un exemple instructif a été documenté par Thomas H. Davenport et Rajeev Ronanki dans le Harvard Business Review. Ils écrirent, "En 2013, le MD Anderson Cancer Center a lancé un projet ""Moon shot " : diagnostiquer et recommander des plans de traitement pour certaines formes de cancer en utilisant le système cognitif Watson d'IBM". Malheureusement, ce système n'a pas fonctionné et en 2017 le projet fut mis en veilleuse après avoir coûté plus de 62 millions de dollars sans avoir été utilisé pour les patients.

Waters a également abordé un autre message, celui des attentes modérées. En ce qui concerne les "assistants personnels à commande vocale", note-t-elle, "on ne sait pas encore si la technologie est capable de remplacer le smartphone pour naviguer dans le monde numérique autrement autrement que pour écouter de la musique ou vérifier les nouvelles et la météo".

D'autres exemples de prévisions modérées abondent. Generva Allen du Baylor College of Medicine et de l'Université Rice a avertit , "Je ne ferais pas confiance à une très grande partie des découvertes actuellement faites qui utilisent des techniques de machine learning appliquées à de grands ensembles de données". Le problème, c'est que bon nombre des techniques sont conçues pour fournir des réponses précises et que la recherche comporte des incertitudes. Elle a précisé : "Parfois, il serait beaucoup plus utile qu'ils reconnaissent que certains sont vraiment consolidés, mais qu'on est pas sûr pour beaucoup d'autres".

Pire encore, dans les cas extrêmes, l'IA n'est pas seulement sous-performante ; elle n'a même pas encore été mise en œuvre. Le FT rapporte, "Quatre jeunes entreprises européennes sur dix n'utilisent aucun programme d'intelligence artificielle dans leurs produits, selon un rapport qui souligne le battage publicitaire autour de cette technologie.

Les cycles d'attentes excessives suivies de vagues de déception ne sont pas surprenants pour ceux qui ont côtoyé l'intelligence artificielle pendant un certain temps. Ils savent que ce n'est pas le premier rodéo de l'IA. En effet, une grande partie du travail conceptuel date des années 1950. D'ailleurs, en passant en revue certaines de mes notes récentes je suis tombé sur une pièce qui explorait les réseaux neuronaux dans le but de choisir des actions - datant de 1993.

La meilleure façon d'avoir une perspective sur l'IA est d'aller directement à la source et Martin Ford nous en donne l'occasion dans son livre, Architects of Intelligence. Organisé sous la forme d'une succession d'entrevues avec des chercheurs, des universitaires et des entrepreneurs de premier plan de l'industrie, le livre présente un historique utile de l'IA et met en lumière les principaux courants de pensée.

Deux perspectives importantes se dégagent de ce livre.

La première est qu'en dépit des origines et des personnalités disparates des personnes interrogées, il existe un large consensus sur des sujets importants.

L'autre est qu'un grand nombre des priorités et des préoccupations des principales recherches sur l'IA sont bien différentes de celles exprimées dans les médias grand public.

Prenons par exemple le concept d'intelligence générale artificielle (AGI). Qui est étroitement lié à la notion de "singularité" ce point où l'IA rejoindra celle de l'homme - avant un dépassement massif de cette dernière. Cette idée et d'autres ont suscité des préoccupations au sujet de l'IA, tout comme les pertes massives d'emplois, les drones tueurs et une foule d'autres manifestations alarmantes.

Les principaux chercheurs en AI ont des points de vue très différents ; ils ne sont pas du tout perturbés par l'AGI et autres alarmismes.

Geoffrey Hinton, professeur d'informatique à l'Université de Toronto et vice-président et chercheur chez Google, dit : "Si votre question est : Quand allons-nous obtenir un commandant-docteur Data (comme dans Star Trek ) je ne crois pas que ce sera comme çà que ça va se faire. Je ne pense pas qu'on aura des programmes uniques et généralistes comme ça."

Yoshua Bengio, professeur d'informatique et de recherche opérationnelle à l'Université de Montréal, nous dit qu'il y a des problèmes très difficiles et que nous sommes très loin de l'IA au niveau humain. Il ajoute : "Nous sommes tous excités parce que nous avons fait beaucoup de progrès dans cette ascension, mais en nous approchant du sommet, nous apercevons d'autres collines qui s'élèvent devant nous au fur et à mesure".

Barbara Grosz, professeur de sciences naturelles à l'Université de Harvard : "Je ne pense pas que l'AGI soit la bonne direction à prendre". Elle soutient que la poursuite de l'AGI (et la gestion de ses conséquences) sont si loin dans l'avenir qu'elles ne sont que "distraction".

Un autre fil conducteur des recherches sur l'IA est la croyance que l'IA devrait être utilisée pour améliorer le travail humain plutôt que le remplacer.

Cynthia Breazeal, directrice du groupe de robots personnels du laboratoire de médias du MIT, aborde la question : "La question est de savoir quelle est la synergie, quelle est la complémentarité, quelle est l'amélioration qui permet d'étendre nos capacités humaines en termes d'objectifs, ce qui nous permet d'avoir vraiment un plus grand impact dans le monde, avec l'IA."

Fei-Fei Li, professeur d'informatique à Stanford et scientifique en chef pour Google Cloud dit lui : "L'IA en tant que technologie a énormément de potentiel pour valoriser et améliorer le travail, sans le remplacer".

James Manyika, président du conseil et directeur du McKinsey Global Institute, fait remarquer que puisque 60 % des professions ont environ un tiers de leurs activités qui sont automatisables et que seulement environ 10 % des professions ont plus de 90 % automatisables, "beaucoup plus de professions seront complétées ou augmentées par des technologies qu'elles ne seront remplacées".

De plus, l'IA ne peut améliorer le travail humain que si elle peut travailler efficacement de concert avec lui.

Barbara Grosz fait remarquer : "J'ai dit à un moment donné que 'les systèmes d'IA sont meilleurs s'ils sont conçus en pensant aux gens'". Je recommande que nous visions à construire un système qui soit un bon partenaire d'équipe et qui fonctionne si bien avec nous que nous ne nous rendions pas compte qu'il n'est pas humain".

David Ferrucci, fondateur d'Elemental Cognition et directeur d'IA appliquée chez Bridgewater Associates, déclare : " L'avenir que nous envisageons chez Elemental Cognition repose sur une collaboration étroite et fluide entre l'intelligence humaine et la machine. "Nous pensons que c'est un partenariat de pensée." Yoshua Bengio nous rappelle cependant les défis à relever pour former un tel partenariat : "Il ne s'agit pas seulement de la précision [avec l'IA], il s'agit de comprendre le contexte humain, et les ordinateurs n'ont absolument aucun indice à ce sujet."

Il est intéressant de constater qu'il y a beaucoup de consensus sur des idées clés telles que l'AGI n'est pas un objectif particulièrement utile en ce moment, l'IA devrait être utilisée pour améliorer et non remplacer le travail et l'IA devrait fonctionner en collaboration avec des personnes. Il est également intéressant de constater que ces mêmes leçons sont confirmées par l'expérience des entreprises.

Richard Waters décrit comment les implémentations de l'intelligence artificielle en sont encore à un stade assez rudimentaire.

Éliminez les recherches qui monopolisent les gros titres (un ordinateur qui peut battre les humains au Go !) et la technologie demeure à un stade très primaire .

Mais au-delà de cette "consumérisation" de l'IT, qui a mis davantage d'outils faciles à utiliser entre les mains, la refonte des systèmes et processus internes dans une entreprise demande beaucoup de travail.

Ce gros travail prend du temps et peu d'entreprises semblent présentes sur le terrain. Ginni Rometty, responsable d'IBM, qualifie les applications de ses clients d'"actes aléatoires du numérique" et qualifie nombre de projets de "hit and miss". (ratages). Andrew Moore, responsable de l'intelligence artificielle pour les activités de Google Cloud business, la décrit comme "intelligence artificielle artisanale". Rometty explique : "Ils ont tendance à partir d'un ensemble de données isolé ou d'un cas d'utilisation - comme la rationalisation des interactions avec un groupe particulier de clients. Tout ceci n'est pas lié aux systèmes, données ou flux de travail plus profonds d'une entreprise, ce qui limite leur impact."

Bien que le cas HBR du MD Anderson Cancer Center soit un bon exemple d'un projet d'IA "au clair de lune "qui a probablement dépassé les bornes, cela fournit également une excellente indication des types de travail que l'IA peut améliorer de façon significative. En même temps que le centre essayait d'appliquer l'IA au traitement du cancer, son "groupe informatique expérimentait l'utilisation des technologies cognitives pour des tâches beaucoup moins ambitieuses, telles que faire des recommandations d'hôtels et de restaurants pour les familles des patients, déterminer quels patients avaient besoin d'aide pour payer leurs factures, et résoudre les problèmes informatiques du personnel".

Dans cette entreprise, le centre a eu de bien meilleures expériences : "Les nouveaux systèmes ont contribué à accroître la satisfaction des patients, à améliorer le rendement financier et à réduire le temps consacré à la saisie fastidieuse des données par les gestionnaires de soins de l'hôpital. De telles fonctions banales ne sont peut-être pas exactement du ressort de Terminator, mais elles sont quand même importantes.

Optimiser l'IA dans le but d'augmenter le travail en collaborant avec les humains était également le point central d'une pièce de H. James Wilson et Paul R. Daugherty "HBRpiece". Ils soulignent : "Certes, de nombreuses entreprises ont utilisé l'intelligence artificielle pour automatiser leurs processus, mais celles qui l'utilisent principalement pour déplacer leurs employés ne verront que des gains de productivité à court terme. Grâce à cette intelligence collaborative, l'homme et l'IA renforcent activement les forces complémentaires de l'autre : le leadership, le travail d'équipe, la créativité et les compétences sociales de la première, la rapidité, l'évolutivité et les capacités quantitatives de la seconde".

Wilson et Daugherty précisent : "Pour tirer pleinement parti de cette collaboration, les entreprises doivent comprendre comment les humains peuvent le plus efficacement augmenter les machines, comment les machines peuvent améliorer ce que les humains font le mieux, et comment redéfinir les processus commerciaux pour soutenir le partenariat". Cela demande beaucoup de travail et cela va bien au-delà du simple fait de balancer un système d'IA dans un environnement de travail préexistant.

Les idées des principaux chercheurs en intelligence artificielle, combinées aux réalités des applications du monde réel, offrent des implications utiles. La première est que l'IA est une arme à double tranchant : le battage médiatique peut causer des distractions et une mauvaise attribution, mais les capacités sont trop importantes pour les ignorer.

Ben Hunt discute des rôles de la propriété intellectuelle (PI) et de l'intelligence artificielle dans le secteur des investissements, et ses commentaires sont largement pertinents pour d'autres secteurs. Il note : "L'utilité de la propriété intellectuelle pour préserver le pouvoir de fixation des prix est beaucoup moins fonction de la meilleure stratégie que la PI vous aide à établir, et beaucoup plus fonction de la façon dont la propriété intellectuelle s'intègre dans le l'esprit du temps (Zeitgeist) dominant dans votre secteur.

Il poursuit en expliquant que le "POURQUOI" de votre PI doit "répondre aux attentes de vos clients quant au fonctionnement de la PI" afin de protéger votre produit. Si vous ne correspondez pas à l'esprit du temps, personne ne croira que les murs de votre château existent, même si c'est le cas". Dans le domaine de l'investissement (et bien d'autres encore), "PERSONNE ne considère plus le cerveau humain comme une propriété intellectuelle défendable. Personne." En d'autres termes, si vous n'utilisez pas l'IA, vous n'obtiendrez pas de pouvoir de fixation des prix, quels que soient les résultats réels.

Cela fait allusion à un problème encore plus grave avec l'IA : trop de gens ne sont tout simplement pas prêts à y faire face.

Daniela Rus, directrice du laboratoire d'informatique et d'intelligence artificielle (CSAIL) du MIT déclare : "Je veux être une optimiste technologique. Je tiens à dire que je vois la technologie comme quelque chose qui a le potentiel énorme d'unir les gens plutôt que les diviser, et de les autonomiser plutôt que de les désolidariser. Mais pour y parvenir, nous devons faire progresser la science et l'ingénierie afin de rendre la technologie plus performante et plus utilisable." Nous devons revoir notre façon d'éduquer les gens afin de nous assurer que tous ont les outils et les compétences nécessaires pour tirer parti de la technologie.

Yann Lecun ajoute : "Nous n'aurons pas de large diffusion de la technologie de l'IA à moins qu'une proportion importante de la population ne soit formée pour en tirer parti ".

Cynthia Breazeal répéte : "Dans une société de plus en plus alimentée par l'IA, nous avons besoin d'une société alphabétisée à l'IA."

Ce ne sont pas non plus des déclarations creuses ; il existe une vaste gamme de matériel d'apprentissage gratuit pour l'IA disponible en ligne pour encourager la participation sur le terrain.

Si la société ne rattrape pas la réalité de l'IA, il y aura des conséquences.

Brezeal note : "Les craintes des gens à propos de l'IA peuvent être manipulées parce qu'ils ne la comprennent pas."

Lecun souligne : " Il y a une concentration du pouvoir. À l'heure actuelle, la recherche sur l'IA est très publique et ouverte, mais à l'heure actuelle, elle est largement déployée par un nombre relativement restreint d'entreprises. Il faudra un certain temps avant que ce ne soit utilisé par une plus grande partie de l'économie et c'est une redistribution des cartes du pouvoir."

Hinton souligne une autre conséquence : "Le problème se situe au niveau des systèmes sociaux et la question de savoir si nous allons avoir un système social qui partage équitablement... Tout cela n'a rien à voir avec la technologie".

À bien des égards, l'IA est donc un signal d'alarme. En raison de l'interrelation unique de l'IA avec l'humanité, l'IA a tendance à faire ressortir ses meilleurs et ses pires éléments. Certes, des progrès considérables sont réalisés sur le plan technologique, ce qui promet de fournir des outils toujours plus puissants pour résoudre des problèmes difficiles. Cependant, ces promesses sont également limitées par la capacité des gens, et de la société dans son ensemble, d'adopter les outils d'IA et de les déployer de manière efficace.

Des preuves récentes suggèrent que nous avons du pain sur la planche pour nous préparer à une société améliorée par l'IA. Dans un cas rapporté par le FT, UBS a créé des "algorithmes de recommandation" (tels que ceux utilisés par Netflix pour les films) afin de proposer des transactions pour ses clients. Bien que la technologie existe, il est difficile de comprendre en quoi cette application est utile à la société, même de loin.

Dans un autre cas, Richard Waters nous rappelle : "Cela fait presque dix ans, par exemple, que Google a fait trembler le monde de l'automobile avec son premier prototype de voiture autopropulsée". Il continue : "La première vague de la technologie des voitures sans conducteur est presque prête à faire son entrée sur le marché, mais certains constructeurs automobiles et sociétés de technologie ne semblent plus aussi désireux de faire le grand saut. Bref, ils sont menacés parce que la technologie actuelle est à "un niveau d'autonomie qui fait peur aux constructeurs automobiles, mais qui fait aussi peur aux législateurs et aux régulateurs".

En résumé, que vous soyez investisseur, homme d'affaires, employé ou consommateur, l'IA a le potentiel de rendre les choses bien meilleures - et bien pires. Afin de tirer le meilleur parti de cette opportunité, un effort actif axé sur l'éducation est un excellent point de départ. Pour que les promesses d'AI se concrétisent, il faudra aussi déployer beaucoup d'efforts pour mettre en place des infrastructures de systèmes et cartographier les forces complémentaires. En d'autres termes, il est préférable de considérer l'IA comme un long voyage plutôt que comme une destination à court terme.

Auteur: Internet

Info: Zero Hedge, Ven, 03/15/2019 - 21:10

[ prospective ]

Commenter

Commentaires: 0

Ajouté à la BD par miguel
Mis dans la chaine