Citation
Catégorie
Tag – étiquette
Auteur
Info



nb max de mots
nb min de mots
trier par
Derniers ajouts !! cliquez sur GO. Dictionnaire analogique intriqué pour extraits. Recherche mots ou phrases tous azimuts.  Aussi outil de réflexion communautaire. EXEMPLES. Insérer une citationPunchlinesChainesHumourRéparties, etc. ATTENTION, faire un&n... Lire la suite >>
Résultat(s): 18
Temps de recherche: 0.0557s

théologie

Penser, réfléchir... Le raisonnement d'origine et sa maîtrise, très simples, ont suffi à l'expansion des humain en tant que race grégaire "à mémoire externe". Un très léger recul de la raison, multiplié par la solidarité des hommes, a été suffisant pour assurer sa domination sur les autres espèces évoluées. Tout comme la sémiotique de Peirce, ou la théorie de la communication, cette réflexion simple, à faible continuité, s'articule sur l'inamovible triade "réalité" "interaction" "réaction". De ce qu'on pourrait aussi nommer "signifiant", "interprétant", signifié" est issue la logique formelle. Elle s'est développée subséquemment sur trois axes de savoirs accumulés, le langage, les maths et l'histoire. Résultants de ces 3 outils, mais rarement en concordance sur les trois plans, sont apparus des modèles, référents, exemples, etc. Desquels on a pu montrer des différences, analogie, oppositions, alliances, etc... Le principe du tiers exclus et sa maîtrise était bien suffisant, puissant et efficace pour assurer la suprématie humaine.

On dirait bien que le vingtième siècle, (époque de l'apparition de mon infime moi), a fait prendre conscience de trois éléments supplémentaires, dérivés, mais toujours logiques, pour effectuer de meilleurs calculs/réflexions. Il sont de récente apparition mais seront visiblement toujours plus utilisés de par le développement de la technologie et parce que, une fois encore, nos connaissance sont grégaires. Je veux parler de l'itération, de la singularité et des statistiques.

La première montre qu'il y a un tâtonnement incessant, qu'on pourrait nommer "exploration des possibilités de solutions", comme le scan répété d'une situation depuis un point de vue unique et relativement stable.

La deuxième fut de réaliser que chaque "émergence du vivant" possède une singularité, quasi absolue, mais néanmoins combinable avec une infinité d'autres singularités, un peu comme une pièce de puzzle adaptable (pensons à la reproduction pour faire simple).

Et la troisième, c'est qu'il y a (qu'il faut ?) une variété extraordinaire et innombrable de toute les singularités d'une branche (espèce, taxon), ce qui semble nécessaire pour conserver les meilleures chances de survie dans des milieux qui ne sont jamais stables par définition. En ce sens on pourrait penser que plus une espèce dure plus elle est miroirs de son adaptation à un milieu, mais c'est beaucoup plus compliqué que cela.

Ce 3e point souligne donc la nécessité d'une "variété de l'innombrable", autrement la vie présente sans cesse la plus grande ouverture possible en multipliant les singularités et les variétés d'espèces (ou végétaux) qui réussissent. C'est ici, en fonction de l'évolution des mathématiques, et l'étude affinée des grands nombres d'individus (on pourra penser ici aux statistiques médicales humaines) que nous basculons nécessairement dans ce qui devient la sciences post-dénombrement : les probabilités. Et là, l'arrivée de l'indéterminisme d'Heisenberg aidant, les spécialistes de la mécanique quantique seront bien contents de pouvoir utiliser ces outils statistiques probabilistes pour s'attaquer à mieux comprendre la réalité qui s'offre à eux.

En ce sens, partant de ce nouveau concept, cette qualité mélangée onde-corpuscule incompréhensible à nos sens, et au regard des derniers constats de l'épigénétique, on peut en venir à imaginer une "source" avec des potentialités de calculs très au-delà des plus incroyables computers quantiques imaginables. En effet, cette "origine", ou "principe-démiurge", "Dieu", "Extraterrestres" ou autre... serait capable, en fonctionnant par - et avec - les résonances d'un "réel projeté par Elle-même", de s'adapter en continu avec les impondérables au-delà de sa préhension. Avec diverses vitesses de réaction/adaptation en fonction du niveau de taille/développement de la vie.
Nous sommes bien sûr au niveau local avec cet exemple (Gaïa). Ce qui, et c'est bien amusant, conforte l'idée de "divinités locales", planétaires par exemple, qui pourraient dès lors laisser supposer, ou imaginer, tout un système d'"entités" de ce genre, avec des interactions, tensions... hiérarchies. Bref de , de quoi concocter de bien belles épopées fantastiques et autres space opera métaphysiques..

Auteur: Mg

Info: 21 février 2020

[ biophysique ] [ projectionniste ] [ yotta-physique ]

Commenter

Ajouté à la BD par miguel

mouvement

L’origine du déplacement rapide chez les bactéries semble liée à un dispositif rotatoire inconnu chez les cellules à noyau. Un flagelle, sorte de cordon semblable à un fouet, est attaché à la base de la bactérie. La base ronde, en forme de disque, connue comme un "moteur protonique", tourne véritablement, propulsée par des changements de charge électrique. Comme le flagelle, constitué de protéines de flagelline, est attaché à cette roue, il tourne naturellement avec elle. En règle générale, la roue et le flagelle se trouvent à l’extérieur chez les procaryotes. Mais chez certaines bactéries comme les spirochètes, le flagelle est internalisé.

Auteur: Margulis Lynn

Info: Dans "L'univers bactériel", pages 79-80

[ cellule motrice ] [ biophysique ]

Commenter

Ajouté à la BD par Coli Masson

épigénétique

"Percer les secrets du vivant grâce à la biologie quantique"
En primeur pour notre magazine, Birgitta Whaley, qui dirige le Berkeley Quantum Information and Computation Center de l'université de Californie, a accepté d'expliquer en quoi les "mécanismes quantiques à l'oeuvre chez les organismes vivants" pouvaient révolutionner le monde. D'autant qu'ils ne sont qu'une cinquantaine de scientifiques à travers la planète à poursuivre ces travaux fondamentaux.

Sciences et Avenir : Quand on évoque l’information quantique, on pense en premier lieu à la physique et aux particules de matière ou de lumière. Or, vous travaillez sur le vivant ?

Birgitta Whaley : Nous étudions tout un éventail d'organismes, des plantes vertes aux bactéries, qu'il s'agisse d'unicellulaires ou de feuilles. Mais aussi des oiseaux ou d'autres animaux. Nous voulons apporter la preuve qu'il existe un comportement quantique chez ces organismes vivants, à toute petite échelle, impliquant des "grains de lumière" (photons).

Avez-vous découvert ce comportement quantique ? Oui, il est tout à fait évident que des effets quantiques sont au coeur, en particulier, de ce qu’on appelle la photosynthèse. Nous les observons dans les premiers stades de ce mécanisme essentiel à la vie qui permet l’absorption de la lumière, puis sa transformation en énergie électronique, les électrons déclenchant ensuite les réactions chimiques qui permettent la formation de glucides [constituants essentiels des êtres vivants].

Outre la connaissance fondamentale, pourquoi est-ce important de comprendre ce mécanisme ?

Parce qu’il est essentiel à la production de nourriture et donc à notre vie. Mais imaginez aussi que nous parvenions à réaliser une photosynthèse artificielle qui capture l’énergie solaire aussi bien que le font les plantes, dont le processus a été hautement optimisé après 3,6 milliards d’années d’évolution. Ce ne serait plus 15 % de rendement que l’on obtiendrait, comme cela se pratique avec le photovoltaïque aujourd’hui, mais presque 100 % !

Qu’ont donc réussi à faire les plantes, et pas nous ?

Chez les plantes vertes, des récepteurs composés de chlorophylle sont capables d’absorber des photons alors même que la lumière reçue est très faible. Chacun d’eux ne reçoit en moyenne qu’un photon toutes les dix secondes. Il faut que la plante soit vraiment très efficace pour réaliser cette absorption avec si peu de lumière. Il y a même des bactéries marines qui n’absorbent qu’un photon (dans l’infrarouge) toutes les vingt minutes.

Qu’est-il important de mesurer ?

Les détails de ce processus d’absorption, en particulier sa dynamique… Nous connaissons très bien la chlorophylle, nous savons quelle partie de la molécule absorbe le photon et à quel niveau. Le problème vient de ce que cette chlorophylle est enchâssée dans un échafaudage complexe de protéines- pigments qui se mettent à leur tour à vibrer, à entrer en rotation… Nos expériences suggèrent fortement que ces vibrations oeuvrent en conjonction avec l’excitation électronique déclenchée par l’arrivée du photon. Elles aident au transfert des électrons qui déclencheront ultérieurement des réactions chimiques. Ce mécanisme d’absorption, facilité par des effets quantiques, peut avoir jusqu’à 99 % d’efficacité. Un photon arrive, un électron est produit. Finement réglé, il répond à une nécessité de survie de l’organisme.

Quel genre d’appareillages utilisez-vous pour les mesures ?

Nous employons des faisceaux laser pulsés, qui permettent de préciser la dynamique d’excitation des molécules. Par exemple, avec trois pulses qui se succèdent [arrivée de photons d’une certaine fréquence], nous pouvons voir, lors du premier, la molécule réceptrice amorcer son passage vers un état « excité », puis, lors du deuxième pulse, la molécule devenir entièrement excitée, le troisième pulse permettant d’apporter des précisions sur la durée de cette excitation.

Cela ne semble pas évident…

En biologie, vous ne savez pas où s’arrête le système quantique et où commence son environnement. La plupart des spécialistes haussent les épaules en disant que tout cela est trop compliqué, qu’ils ne veulent même pas en entendre parler !

Dans combien de temps pensez-vous comprendre ce qui se passe ?

Peut-être dans vingt ans… Mais d’ici à dix ans, grâce à la biologie synthétique, nous devrions pouvoir élaborer une structure qui fasse progresser notre compréhension.

"COMPORTEMENT. Fascinante intelligence spatiale des oiseaux. La migration des oiseaux et leur capacité à déterminer la bonne direction à prendre sont aussi un domaine "très tendance" en biologie quantique ! Birgitta Whaley le trouve d’autant plus fascinant que "les effets quantiques ne sont pas du tout évidents. Est peut-être impliquée ici ce qu’on nomme l’intrication quantique" [deux objets qui peuvent être spatialement séparés mais doivent être traités globalement, comme un seul]. La lumière est en effet absorbée par une molécule à l’arrière de la rétine de chaque oeil de l’oiseau, qui produit puis transfère un électron. On se demande alors quel est le comportement quantique des deux électrons (entre eux) qui pénètrent dans le cerveau de l’oiseau, ce qui lui délivre un message particulier. Mais il ne s’agit pour l’instant que "d’une belle hypothèse et il nous faudrait des données expérimentales".)

Auteur: Internet

Info: www.sciencesetavenir.fr, Dominique Leglu, 7.11.2016

[ biophysique ]

Commenter

Commentaires: 0

Ajouté à la BD par miguel

épigénétique

De la biologie quantique dans la photosynthèse ? La biologie actuelle en est-elle au stade où était la physique classique avant la découverte de la physique quantique ? Certains le soupçonnent depuis quelques années, et une publication récente dans Nature Communications vient d'apporter de l'eau à leur moulin. Il y aurait bien des processus quantiques derrière l'efficacité de la photosynthèse.

(On note Ψ la fameuse fonction d'onde décrivant les amplitudes de probabilité en mécanique quantique depuis les travaux de Schrödinger sur sa célèbre équation. On a de nouvelles raisons de penser que la vie exploite les lois de la mécanique quantique pour rendre certains processus plus efficaces, en particulier la photosynthèse. © Engel Group, University of Chicago - En commentaire de la photo d'une feuille au soleil)

C'est un fait bien établi que l'existence des atomes, des molécules et des liaisons chimiques ne sont pas compréhensibles en dehors des lois de la mécanique quantique. En ce sens, la physique et la chimie d'un bloc de métal ou d'une cellule sont quantiques. Mais on sait bien que le comportement de ces objets ne manifeste pas directement la nature quantique de la matière, ils font partie du monde de la physique classique. Cependant, certains phénomènes comme la supraconductivité ou la superfluidité débordent du domaine quantique d'ordinaire réservé à la microphysique pour entrer dans le monde à notre échelle. Lorsque la nécessité de la physique quantique s'est révélée aux physiciens explorant la matière et la lumière, ce fut essentiellement avec deux phénomènes qui semblaient au départ être de simples anomalies bien localisées dans l'univers de la physique classique : le rayonnement du corps noir et l'effet photoélectrique. Nous savons aujourd'hui qu'ils étaient la pointe émergée du monde quantique et que, fondamentalement, le réel est fort différent de la vision du monde bâtie par les fondateurs de la science classique comme Galilée, Descartes et Newton.

La biologie quantique pour expliquer la photosynthèse
De nos jours, les biologistes qui réfléchissent sur le fonctionnement des cellules, de l'ADN ou des neurones considèrent que ces objets sont majoritairement décrits par les lois de la physique classique. Il n'est pas nécessaire d'utiliser l'équation de Schrödinger ou les amplitudes de probabilités qu'elle gouverne pour comprendre l'origine de la vie, les mutations, l'évolution ou l'apparition de la conscience dans un cerveau. Pourtant, ces dernières années, quelques résultats expérimentaux en biologie, notamment sur la photosynthèse, semblaient défier les lois de la physique classique.

Il était et il est encore bien trop tôt pour savoir si la photosynthèse finira par être, pour une éventuelle biologie quantique, ce que le rayonnement du corps noir a été pour la physique quantique. Toutefois, Alexandra Olaya-Castro et Edward O'Reilly, des chercheurs du célèbre University College de Londres, viennent de publier dans Nature Communications un article, également disponible en accès libre sur arxiv, dans lequel ils affirment que des macromolécules biologiques utilisent bel et bien des processus quantiques pour effectuer de la photosynthèse. Jusqu'à présent, le doute planait sur l'inadéquation des processus classiques pour décrire le comportement de chromophores attachés à des protéines qu'utilisent les cellules végétales pour capter et transporter l'énergie lumineuse.

Selon les deux physiciens, certains des états de vibrations moléculaires des chromophores facilitent le transfert d'énergie lors du processus de photosynthèse et contribuent à son efficacité. Ainsi, lorsque deux chromophores vibrent, il arrive que certaines énergies associées à ces vibrations collectives des deux molécules soient telles qu'elles correspondent à des transitions entre deux niveaux d'énergie électronique des molécules. Un phénomène de résonance se produit et un transfert d'énergie en découle entre les deux chromophores.

Distributions de probabilités quantiques négatives
Or, si le processus était purement classique, les mouvements et les positions des atomes dans les chromophores seraient toujours décrits par des distributions de probabilités positives. Alexandra Olaya-Castro et Edward O'Reilly ont découvert qu'il fallait employer des distributions négatives. C'est une signature indiscutable de l'occurrence de processus quantiques. Mieux, il s'agit dans le cas présent de la manifestation d'une superposition d'états quantiques à température ambiante assistant un transfert cohérent d'énergie. On retrouve ces vibrations collectives de macromolécules dans d'autres processus biologiques comme le transfert d'électrons dans les centres de réaction des systèmes photosynthétiques, le changement de structure d'un chromophore lors de l'absorption de photons (comme dans les phénomènes associés à la vision). Selon les chercheurs, il est donc plausible que des phénomènes quantiques assistant des processus biologiques que l'on croyait classiques soient assez répandus. Si tel est le cas, on peut s'attendre à découvrir d'autres manifestations hautement non triviales de la mécanique quantique en biologie. Cela n'aurait certainement pas surpris Werner Heisenberg, et encore moins Niels Bohr qui, il y a déjà plus de 60 ans, prédisaient que l'on pourrait bien rencontrer des limites de la physique classique avec les systèmes vivants.

Auteur: Internet

Info: https://www.futura-sciences.com/. Laurent Sacco. 20- 01-2014

[ biophysique ]

Commenter

Commentaires: 0

Ajouté à la BD par miguel

mutation héritée

Les graines héritent des souvenirs de leur mère
Des chercheurs de l'UNIGE démontrent que le contrôle maternel et environnemental de la dormance des graines s'effectue via des mécanismes épigénétiques inédits.

Les graines restent dans un état de dormance - un blocage temporaire de leur croissance - tant que les conditions environnementales ne sont pas idéales pour germer. La profondeur de ce sommeil, qui est influencée par différents facteurs, est héritée de leur mère, comme l'avaient montré des chercheurs de l'Université de Genève (UNIGE). Ils révèlent aujourd'hui dans la revue eLife comment cette empreinte maternelle est transmise grâce à de petits fragments d'ARN dits 'interférents', qui inactivent certains gènes. Les biologistes dévoilent également qu'un mécanisme similaire permet de transmettre une autre empreinte, celle des températures présentes au cours du développement de la graine. Plus cette température était basse, plus le niveau de dormance de la graine sera élevé. Ce mécanisme permet à la graine d'optimiser le moment de sa germination. L'information est ensuite effacée dans l'embryon germé, pour que la génération suivante puisse stocker de nouvelles données sur son environnement.

La dormance est mise en oeuvre pendant le développement des graines dans la plante mère. Cette propriété permet aux graines de germer pendant la bonne saison, d'éviter que tous les rejetons d'une plante se développent au même endroit et entrent en compétition pour des ressources limitées, et favorise la dispersion des plantes. Les graines perdent également leur dormance à des échéances variables. "Des sous-espèces d'une même plante peuvent avoir différents niveaux de dormance selon les latitudes sous lesquelles elles sont produites, et nous voulions comprendre pourquoi", explique Luis Lopez-Molina, professeur au Département de botanique et biologie végétale de la Faculté des sciences de l'UNIGE.

Le gène paternel est réduit au silence
Comme tous les organismes ayant une reproduction sexuée, la graine reçoit deux versions de chaque gène, un allèle maternel et un allèle paternel, qui peuvent avoir des niveaux d'expressions différents. Les biologistes de l'UNIGE avaient montré en 2016 que les niveaux de dormance d'Arabidopsis thaliana (l'Arabette des Dames), un organisme-modèle utilisé en laboratoire, sont hérités de la mère. En effet, chez la graine, le niveau d'expression d'un gène régulateur de dormance appelé allantoinase (ALN) est le même que celui de l'allèle maternel. Ceci implique que c'est l'allèle maternel d'ALN qui est principalement exprimé, au détriment de l'allèle paternel.

Dans l'étude actuelle, les chercheurs montrent que cette empreinte maternelle est transmise par un mécanisme épigénétique, qui influence l'expression de certains gènes sans en modifier la séquence. L'allèle paternel d'ALN est 'réduit au silence' par des modifications biochimiques appelées méthylations, qui sont effectuées dans la région promotrice du gène afin de l'inactiver.

"Ces méthylations sont elles-mêmes le résultat d'un processus dans lequel sont impliqués différents complexes d'enzymes et de facteurs, ainsi que de petits fragments d'ARN dits 'interférents'. Il s'agit d'un exemple inédit d'empreinte génomique, car elle se fait en l'absence de l'enzyme habituellement responsable de la méthylation", détaille Mayumi Iwasaki, chercheuse au sein du groupe genevois et première auteure de l'article.

L'empreinte du froid passé empêche l'éveil de la graine
Les conditions environnementales présentes pendant la formation de la graine laissent aussi leur empreinte, car son niveau de dormance augmente avec une baisse des températures. "Nous avons découvert que, dans ce cas, les deux allèles du gène ALN sont fortement réprimés dans la graine. Ceci est dû à un mécanisme épigénétique semblable, mais dont les acteurs ne sont pas tous identiques à ceux qui opèrent pour réduire l'allèle paternel au silence", expose Luis Lopez-Molina.

Cette empreinte du froid permet à la graine de conserver des informations sur les températures passées pour les inclure dans le choix du moment optimal de germination. Après la germination, le gène ALN est à nouveau réactivé dans l'embryon. La mémoire du froid sera ainsi effacée, ce qui permet de remettre les compteurs à zéro pour la génération suivante.

"Etudier comment les facteurs maternels et environnementaux provoquent l'éveil des graines dormantes est d'une importance cruciale pour l'agriculture, notamment pour prévenir une germination précoce dans un environnement soumis aux changements climatiques", conclut Mayumi Iwasaki. L'enjeu au niveau écologique est, lui aussi, majeur, car l'augmentation des températures pourrait diminuer la dormance de la banque de semences et modifier ainsi la répartition des espèces végétales sous une latitude donnée. Ceci entraînerait de multiples conséquences, directe et indirectes, pour les espèces animales et végétales indigènes. Internet,

Auteur: Internet

Info: https://www.techno-science.net. Publié par Adrien le 27/03/2019, source: Université de Genève

[ biophysique ]

Commenter

Commentaires: 0

Ajouté à la BD par miguel

chair-esprit

Chacune de nos cellules est une entité vivante, et la principale chose qui les influence est notre sang. Si j'ouvre les yeux au matin avec ma belle partenaire devant moi, cette perception provoque une libération d'ocytocine, de dopamine, d'hormones de croissance - tout cela favorisant la croissance et la santé de mes cellules. Mais si je vois un tigre avec des dents comme des sabres, je vais libérer des hormones de stress qui transforment les cellules en mode protection. Les gens doivent se rendre compte que leurs pensées sont plus importantes que leurs gènes, parce que l'environnement, qui est influencé par nos pensées, contrôle les gènes.

Auteur: Lipton Bruce H.

Info: Source : www.huffingtonpost.com

[ biophysique ] [ épigénétique ] [ interaction ]

Commenter

Commentaires: 0

Ajouté à la BD par miguel

métaphysique

Vu qu'il pourrait sembler inhabituel qu'un bio-psychiatre soit un expert dans le domaine de la nature non-vivante, je crois qu'il est utile de donner ici le résumé suivant:
Mon travail actuel a débuté dans le domaine de la psychiatrie et de la psychanalyse, avec des recherches scientifiques naturelles sur l'énergie au travail dans les émotions humaines.
Cela a conduit à la découverte de la bioénergie dans l'organisme vivant, nommée énergie organique orgone. En plus il y eut la découverte du même type d'énergie physique orgonotique dans l'atmosphère.
L'orgonomie n'est pas la psychiatrie, mais la science de la biophysique des émotions, incluant aussi la psychiatrie et la physique dans le domaine de l'énergie organique cosmique basique.
Ce n'est pas un mysticisme, mais une investigation scientifique naturelle, expérimentale, qui porte aussi sur les émotions et les expériences mystiques.
L'énergie orgonotique est une énergie "avant la matière" (pas après, comme l'énergie atomique). Elle est étudiée au moyen de compteurs Geiger-Müller et d'autres instruments physiques.
Il s'ensuit des lois de la nature tout à fait nouvelles, fonctionnelles, jusqu'alors inconnues, hors des lois bien connues de l'électricité, de la chaleur ou de la mécanique.

Auteur: Reich Wilhelm

Info: Where's The Truth, *d'après Wilhelm Reich, énergie cosmique primordiale, omniprésente dans l'univers.

[ biophysique ] [ sciences ]

Commenter

Commentaires: 0

adaptation

Les antibiotiques favorisent le jeu de dupe de certaines bactéries
La surprenante diversité des comportements coopératifs rencontrés dans la nature interroge depuis longtemps les scientifiques. Alors que cette stratégie est fragilisée par la présence d'individus "tricheurs", ces derniers utilisant les ressources de la communauté sans participer à leur production, la coopération existe dans tous les niveaux d'organisation du vivant: entre gènes dans le génome, entre cellules dans les organismes pluricellulaires et entre organismes dans les populations. Si plusieurs études ont déjà souligné l'importance de la proximité génétique et spatiale entre coopérateurs dans l'existence de ce paradoxe, peu de travaux se sont en revanche intéressés au rôle joué par l'environnement dans les interactions entre tricheurs et coopérateurs. C'est justement l'objet de l'étude menée par une équipe de l'ISEM. Dans cette dernière, les chercheurs ont exploré le rôle d'un antibiotique sur la dynamique d'une population de bactéries Pseudomonas aeruginosa comportant des tricheurs et des coopérateurs. Ce microorganisme qui peut présenter un danger pour les patients immunodéprimés ou atteints de mucoviscidose, tire en partie sa virulence de la production de molécules qui sont ensuite partagées avec l'ensemble de la population bactérienne. "Dans notre laboratoire, nous avons étudié en particulier la production de sidérophores, des molécules que seuls les coopérateurs produisent mais qui sont aussi bien utilisées par les coopérateurs que les tricheurs d'une même population pour acquérir du fer", rappelle Michael Hochberg, chercheur à l'ISEM et co-auteur de l'article.
Dans cette nouvelle étude, les scientifiques ont soumis trois types de populations de P. aeruginosa comportant une fraction croissante de tricheurs (15%, 45% puis 75%) à des doses de plus en plus élevées d'antibiotiques. Ils ont ensuite observé sur une période de 48 heures comment les différents dosages antibiotiques modifiaient la capacité des tricheurs à envahir chaque population bactérienne. Les chercheurs ont ainsi pu constater que la fréquence des tricheurs au sein des différentes communautés testées augmentait plus rapidement en présence d'antibiotique et ce quel que soit le niveau de concentration initial de la substance. Pour expliquer ce résultat, l'équipe suggère alors que les coopérateurs sont plus "sensibles" aux antibiotiques que les tricheurs. "Etant donné que les coopérateurs payent le coût de la coopération en produisant les sidérophores, ils ont ensuite moins de ressources métaboliques à investir dans la résistance aux antibiotiques que les tricheurs", détaille Michael Hochberg. A l'aide d'un modèle mathématique, le chercheur et son équipe ont ensuite pu confirmer la pertinence de cette hypothèse et généraliser ainsi leurs résultats au partage de biens publics chez d'autres espèces. Les scientifiques veulent maintenant poursuivre leurs investigations en testant, via leur modèle bactérien, l'influence de facteurs de stress abiotiques tels que la température sur la dynamique des tricheurs. Parvenir à démontrer que les environnements stressants, quels qu'ils soient, favorisent davantage les tricheurs face aux coopérateurs, permettrait de franchir un pas supplémentaire vers la compréhension du maintien et de l'évolution des comportements coopératifs.

Auteur: Internet

Info: http://www.techno-science.net/?onglet=news&news=15939. Donc la population bactérienne qui joue le jeu du système (coopère), tend à diminuer dès qu'il y a une influence modificatrice qui vient de l'extérieur (antibiotiques). Comme si les individus perdaient leur morale sociétale initiale, devenant moins rigides (donc tricheurs). Tricherie qui correspondrait à une adaptation à l'envahisseur, on l'accepte, on se lie/marie. On vit avec. Comme si des extraterrestres arrivaient sur une planète donnée, et que les habitants les plus conventionnels, (ou les plus faibles ou les plus simples...), tendaient à modifier leurs comportements/actions devant cette intrusion. Ainsi, devenant "moins sensible" à cette nouvelle influence externe, ils aident le groupe (société, pays, planète) à perdurer en assimilant l’intrus, par ce qu'on pourrait appeler une adaptation/neutralisation. Commentaire de MG.

[ amoralité ] [ spéculation ] [ biophysique ]

Commenter

Commentaires: 0

quête

Les informations contenues dans l'ADN ne peuvent être réduites à leur substance chimique tout comme les idées d'un livre ne peuvent se réduire à l'encre et au papier. Quelque chose au-delà de la physique et de la chimie encode l'ADN.

Auteur: Polanyi Michael

Info:

[ projectionniste ] [ biophysique ]

Commenter

Commentaires: 0

génétique

L'épigénétique* ne change pas le code génétique, elle modifie la façon dont il est lu. Des gènes parfaitement normaux peuvent provoquer le cancer ou la mort. Dans l'autre sens, dans un bon environnement, des gènes mutants ne s'exprimeront pas. Les gènes sont équivalents à des plans-programmes; l'épigénétique est l'entrepreneur. Elle modifie l'ensemble, la structure.

Auteur: Lipton Bruce

Info: *étude des influences environnementales modifiant l'expression du programme génétique

[ biophysique ] [ méta-moteur ] [ chair-esprit ]

Commenter

Commentaires: 0