Citation
Catégorie
Tag – étiquette
Auteur
Info



nb max de mots
nb min de mots
trier par
Derniers ajouts !! cliquez sur GO. Dictionnaire analogique intriqué pour extraits. Recherche mots ou phrases tous azimuts.  Aussi outil de réflexion communautaire. EXEMPLES. Insérer une citationPunchlinesChainesHumourRéparties, etc. ATTENTION, faire un&n... Lire la suite >>
Résultat(s): 22
Temps de recherche: 0.185s

définition

La sémiotique est le domaine des signes et des sens. La sémantique est le domaine de la signification ou du Sens. Le modèle de structure sphérique absolue d’Abellio (SAS) a une valeur heuristique considérable. C’est un invariant universel à tous les niveaux de réalité, C’est plus qu’un hologramme, c’est un holon.

Le modèle de Structure Absolue Sphérique (SAS) qui illustre la logique de double contradiction croisée d’Abellio est intrinsèque à la Réalité dans tous ses aspects.

La résonance sémantique vasculaire montre que cette SAS joue comme un oscillateur harmonique du niveau physique le plus fondamental jusqu’au niveau psychologique le plus subtil.

Le corps humain est l’instrument le plus complexe de notre univers. Il peut donc détecter des phénomènes et des événements non détectables par les technologies les plus complexes utilisées actuellement. Il détecte les phénomènes et les noumènes.

- En tant qu’hologramme de l’univers il entre en résonance avec tous les phénomènes matériels de cet univers.
- En tant qu’holon il entre en résonance avec ce qui est matière et antimatière, avec ce qui est espace et temps, avec ce qui est local et non local.
- Autrement dit le plus complexe peut mesurer le moins complexe alors que le moins complexe ne peut mesurer le plus complexe.

Le corps humain qui est de l’ordre du fini ou local peut aussi entrer en résonance avec l’infini ou non local, ce qui suggère que l’homme est la mesure de tout, du Tout et du Non Tout, de l’Être et du Non Être.

Cette structuration dynamique sphérique du corps humain corroborée par la résonance sémantique vasculaire permet de détecter des phénomènes au niveau quantique ou énergétique, au niveau subquantique ou spirituel, au niveau métaquantique ou divin. Chaque processus a un spectrogramme ou code-barres spécifique. Le corps humain détecte non seulement les phénomènes mais aussi les noumènes. Sa structure complexe entre en résonance avec l’esprit et le divin qui est le centre de chaque atome.

Le métabolisme de l’ontogénèse récapitule celui de la cosmogénèse et de la théogénèse.

La résonance sémantique vasculaire détecte non seulement les états stationnaires ou stases mais aussi les transitions entre stases ou ek-stases selon la terminologie d’Abellio.

On voit ainsi que la "substantiation" ou passage du Néant au métaquantique est le lieu de la différentiation entre local et non local. Le passage du métaquantique au subquantique est le lieu de la différentiation entre espace et temps. Le passage du subquantique au quantique est le lieu de la différentiation entre matière et antimatière.

La conjugaison de phase entre matière et antimatière constitue l’Intersubjectivité ou Nous transcendantal dont le code-barres est équivalent vibratoire de Bande de Moebius.

On a eu la surprise de voir qu’à l’autre extrémité de ce métabolisme énergétique, au niveau de la transsubstantiation ou Néant, l’intensification ou inversion 2π de ce Néant redonnait L’intersubjectivité qui est équivalent vibratoire de la Présence ou la Grâce des chrétiens.

On est donc bordé par la Présence des deux bords. On peut l’aborder par le Néant ou par la Matière. Chaque abordage est une intensification ou inversion d’inversion de l’étape précédente.

En résumé, la SAS par son plan équatorial exprime le plan sémiotique, énergétique ou quantique. L’axe vertical de la SAS exprime le plan sémantique ou subquantique. Le centre de la SAS exprime le plan métaquantique ou divin. L’inversion d’inversion du Centre de la SAS ou Divin donne le Néant ou Ain-Soph ou Urgrund ou Déité de Dieu où le Centre est partout et la circonférence nulle part. Une inversion d’inversion du Néant redonne l’Intersubjectivité ou Nous transcendantal.

Aux plans "mondains" quantique, subquantique et métaquantique de la SAS, la résonance sémantique permet d’ajouter les plans «extra-mondains» néantique et holonique. Le plan holonique réalise la communion entre le mondain et l’extra-mondain.

Les corps humains actuels expriment de la difficulté à métaboliser l’ensemble de ces différents plans.

Auteur: Ratte Jean

Info: Rencontres Raymond Abellio 2011 à Seix. Résumé de La Structure Absolue Sphérique (SAS) à tous les niveaux en tant qu’Oscillateur Harmonique.

[ holarchie ] [ anthropocentrisme ] [ bio-sémantique ]

Commenter

Commentaires: 0

Ajouté à la BD par miguel

théorie endosymbiotique

Des gènes "étrangers", issus de micro-organismes ayant cohabité avec nos lointains ancêtres sont présents dans notre ADN, révèle une étude publiée le 13 mars 2015 dans la revue Genome Biology. En d’autres termes, nos gènes ne sont pas seulement hérités de nos ancêtres : ils proviennent aussi d’organismes vivants très différents de notre espèce, qui nous ont été transmis au cours de notre évolution. Un résultat d’autant plus surprenant que ces travaux révèlent que ces gènes issus de ces micro-organismes, loin de jouer un rôle anecdotique, ont des fonctions cruciales dans le fonctionnement de notre organisme. En effet, ils sont notamment impliqués dans le métabolisme des lipides […] et dans les processus de défense immunitaire. Quels sont ces micro-organismes qui nous ont transmis ces gènes ? Il s’agit essentiellement de bactéries et de protistes (des organismes généralement unicellulaires comme les micro-algues et les protozoaires). Comment ces gènes ont-ils bien pu pénétrer dans notre génome ? Par un processus appelé "transfert horizontal de gènes" (HGT pour horizontal gene transfer en anglais). Un processus déjà connu pour être à l’œuvre chez certains animaux simples, comme le ver nématode dont le génome possède des gènes issus de plantes et de micro-organismes. […] Or, ces nouveaux travaux montrent que, loin de concerner des animaux très simples comme le ver nématode, le transfert horizontal de gènes concerne aussi en réalité très probablement… la plupart des êtres vivants complexes, dont les primates et l’homme.

Auteur: Anonyme

Info: Dans "Les magiciens du nouveau siècle", page 153

[ mutations génétiques ]

Commenter

Commentaires: 0

Ajouté à la BD par Coli Masson
Mis dans la chaine

sel minéral

Le calcium joue un rôle central dans le métabolisme de toutes les cellules à noyau. Il joue un rôle indispensable dans le mouvement des cellules amiboïdes, la sécrétion cellulaire, la formation des microtubules et l’adhérence des cellules. Le calcium dissous doit être en permanence retiré de la solution environnante pour que les microtubules fonctionnent lors de la mitose, de la sexualité méiotique et de l’activité cérébrale. Du fait que la partie "chimio" des messages chimioélectriques envoyés par les cellules nerveuses du cerveau a quelque rapport avec le calcium, les réseaux de communication du cerveau qui déclenchent les neurones dépendent autant du calcium que les communications téléphoniques dépendent des câbles de cuivre.

Auteur: Margulis Lynn

Info: Dans "L'univers bactériel", page 203

[ physiologie cellulaire ] [ utilité ] [ conducteur ]

Commenter

Commentaires: 0

Ajouté à la BD par Coli Masson

mâles-femelles

Les différences entre les sexes englobent bien plus que les organes sexuels. Les hommes et les femmes diffèrent par exemple par leur taille, leur composition corporelle ou encore leur durée de vie. Le sexe biologique affecte aussi la santé, des différences étant observées dans la réponse aux traitements de nombreuses maladies.

Par quels mécanismes ces différences se mettent-elles en place ? C'est à cette question qu'ont souhaité répondre Bruno Hudry de l'Institut de biologie Valrose (CNRS/Inserm/Université Nice Sophie Antipolis) et ses collaborateurs du laboratoire Plasticité du cerveau (CNRS/ESPCI Paris).

Les cellules souches intestinales ont un taux de prolifération plus élevé sur les femelles alors que le métabolisme des glucides est plus élevé chez les mâles. (Voir le schéma sur le site)

Dans une étude publiée le 8 août 2019 dans Cell, ils ont montré, chez la drosophile, que les testicules "parlent" à une partie particulière de l'intestin, via une molécule circulante appelée cytokine, pour augmenter la digestion et l'absorption des sucres dans l'intestin des mâles. En réponse, cette région de l'intestin sécrète du citrate, qui agit sur les testicules pour soutenir la production de sperme. Un organe adulte comme l'intestin possède donc une "identité sexuelle" complexe, qui induit des propriétés physiologiques distinctes entre les sexes, qu'il est aujourd'hui nécessaire de mieux prendre en compte dans la recherche fondamentale et clinique.

Auteur: Internet

Info: https://www.techno-science.net, Publié par Adrien le 13/08/2019 à 08:00. Réf : Gut-testis crosstalk controls sex differences in intestinal sugar handling to promote food intake and sperm maturation. Bruno Hudry, Eva de Goeij, Alessandro Mineo, Pedro Gaspar, Dafni Hadjieconomou, Chris Studd, Joao B. Mokochinski, Holger B. Kramer, Pierre-Yves Plaçais, Thomas Preat, Irene Miguel-Aliaga. Cell, le 8 août 2019. DOI: 10.1016/j.cell.2019.07.029

[ physiologie ]

Commenter

Commentaires: 0

Ajouté à la BD par miguel

interactions

L'épigénétique, l'hérédité au-delà de l'ADN
Des mécanismes ne modifiant pas notre patrimoine génétique jouent un rôle fondamental dans le développement de l'embryon. Ils pourraient expliquer comment l'environnement induit des changements stables de caractères, voire des maladies, éventuellement héritables sur plusieurs générations.

L'épigénétique, c'est d'abord cette idée que tout n'est pas inscrit dans la séquence d'ADN du génome. "C'est un concept qui dément en partie la "fatalité" des gènes", relève Michel Morange, professeur de biologie à l'ENS. Plus précisément, "l'épigénétique est l'étude des changements d'activité des gènes - donc des changements de caractères - qui sont transmis au fil des divisions cellulaires ou des générations sans faire appel à des mutations de l'ADN", explique Vincent Colot, spécialiste de l'épigénétique des végétaux à l'Institut de biologie de l'Ecole normale supérieure (ENS-CNRS-Inserm, Paris).

Est-ce la fin de l'ère du "tout-ADN", qui a connu son apogée vers l'an 2000 avec les grandes manoeuvres du séquençage du génome humain ? "L'organisme reste construit à partir de ses gènes, même si l'activité de ceux-ci peut être modulée", tempère Michel Morange.

Mais le séquençage des génomes l'a révélé avec éclat : la connaissance seule de la séquence de l'ADN ne suffit pas à expliquer comment les gènes fonctionnent. C'était pourtant prévisible : si cette connaissance suffisait, comment expliquer que malgré leur génome identique, les différents types de cellules d'un individu développent des caractères aussi différents que ceux d'un neurone, d'une cellule du foie, des muscles ou de la peau ?

L'épigénétique répond en partie à cette interrogation - mais elle en soulève de nombreuses autres. "Le cadre classique de l'épigénétique, c'est le développement de l'embryon et la différenciation des cellules de l'organisme", indique Vincent Colot. Mais ses enjeux concernent également la médecine et la santé publique... et les théories sur l'évolution. Elle jette le soupçon sur l'environnement, qui pourrait moduler l'activité de certains de nos gènes pour modifier nos caractères, voire induire certaines maladies qui pourraient être transmis(es) à la descendance.

La première question, cependant, est celle de la définition de ce fascinant concept. Un certain flou persiste, même chez les scientifiques. "Ces ambiguïtés tiennent au fait que le terme a été introduit à plusieurs reprises dans l'histoire de la biologie, avec à chaque fois un sens différent", raconte Michel Morange, qui est aussi historien des sciences. Précurseur absolu, Aristote invente le terme "épigenèse" - de épi-, "au-dessus de", et genèse, "génération" - vers 350 avant notre ère.

"Observant des embryons de poulet, Aristote découvre que les formes ne préexistent pas dans le germe, mais sont, au contraire, progressivement façonnées au cours du développement embryonnaire", rapporte Edith Heard, qui dirige une équipe (Institut Curie-Inserm-CNRS) sur l'épigénétique du développement des mammifères. Une vision admirablement prémonitoire, qui ne se verra confirmée qu'avec l'invention du microscope à la fin du XVIIe siècle.

Quant au mot "épigénétique", il apparaît en 1942 : on le doit au généticien anglais Conrad Waddington, qui s'attache à comprendre le rôle des gènes dans le développement. Comment s'opère le passage du génotype (l'ensemble des gènes) au phénotype (l'ensemble des caractères d'un individu) ? A l'époque, on ignorait que l'ADN est le support de l'hérédité. Mais les liens entre génotype et phénotype se précisent peu à peu, à mesure qu'on découvre la structure des gènes et leur mode de régulation. Une étape décisive est franchie avec les travaux de François Jacob, Jacques Monod et André Lwoff, Prix Nobel en 1965 : ils montrent l'importance d'un facteur de l'environnement (la présence d'un sucre, le lactose) dans le contrôle de l'expression d'un gène et la détermination d'un caractère (la capacité de la bactérie E. coli à utiliser le lactose comme source d'énergie).

Le concept d'épigénétique tombe ensuite en relative déshérence, pour renaître dans les années 1980 avec son sens moderne. "Un chercheur australien, Robin Holliday, observe dans des cellules en culture des changements de caractères qui sont transmis au fil des divisions cellulaires, relate Vincent Colot. Mais ces changements semblaient trop fréquents pour pouvoir être causés par des mutations de l'ADN." Holliday découvre le rôle, dans cette transmission, de certaines modifications de l'ADN qui n'affectent pas la séquence des "nucléotides", ces lettres qui écrivent le message des gènes.

Plus largement, on sait aujourd'hui que les gènes peuvent être "allumés" ou "éteints" par plusieurs types de modifications chimiques qui ne changent pas la séquence de l'ADN : des méthylations de l'ADN, mais aussi des changements des histones, ces protéines sur lesquelles s'enroule l'ADN pour former la chromatine. Toutes ces modifications constituent autant de "marques épigénétiques". Elles jalonnent le génome en des sites précis, modulant l'activité des gènes localisés sur ces sites.

Quelle est la stabilité de ces marques épigénétiques ? La question est centrale. Certaines sont très transitoires, comme les marques qui régulent les gènes liés aux rythmes du jour et de la nuit. "Au moins 15 % de nos gènes sont régulés d'une façon circadienne : leur activité oscille sur un rythme de 24 heures. Il s'agit de gènes qui gouvernent notre métabolisme, assurant par exemple l'utilisation des sucres ou des acides gras", indique Paolo Sassone-Corsi, qui travaille au sein d'une unité Inserm délocalisée, dirigée par Emiliana Borrelli à l'université de Californie (Irvine). "Pour réguler tant de gènes d'une façon harmonieuse, il faut une logique commune. Elle se fonde sur des processus épigénétiques qui impliquent des modifications des histones."

D'autres marques ont une remarquable pérennité. "Chez un individu multicellulaire, elles peuvent être acquises très tôt lors du développement, sous l'effet d'un signal inducteur, rapporte Vincent Colot. Elles sont ensuite transmises au fil des divisions cellulaires jusque chez l'adulte - bien longtemps après la disparition du signal inducteur." Les marques les plus stables sont ainsi les garantes de "l'identité" des cellules, la vie durant. Comme si, sur la partition d'orchestre de l'ADN du génome - commune à toutes les cellules de l'organisme -, chaque instrument - chaque type de cellule - ne jouait que la partie lui correspondant, n'activant que les gènes "tagués" par ces marques.

Un des plus beaux exemples de contrôle épigénétique chez les mammifères est "l'inactivation du chromosome X". "Ce processus a lieu chez toutes les femelles de mammifères, qui portent deux exemplaires du chromosome X, explique Edith Heard. L'inactivation d'un des deux exemplaires du X, au cours du développement précoce, permet de compenser le déséquilibre existant avec les mâles, porteurs d'un seul exemplaire du X."

Si l'inactivation du X est déficiente, l'embryon femelle meurt très précocement. Cette inactivation est déclenchée très tôt dans le développement de l'embryon, "dès le stade "4 cellules" chez la souris et un plus tard pour l'espèce humaine, puis elle est stabilisée par des processus épigénétiques tout au long de la vie", poursuit Edith Heard. Par ailleurs, son équipe vient de publier un article dans Nature mis en ligne le 11 avril, montrant que les chromosomes s'organisent en "domaines", à l'intérieur desquels les gènes peuvent être régulés de façon concertée, et sur lesquels s'ajoutent des marques épigénétiques.

Les enjeux sont aussi médicaux. Certaines "épimutations", ou variations de l'état épigénétique normal, seraient en cause dans diverses maladies humaines et dans le vieillissement. Ces épimutations se produisent par accident, mais aussi sous l'effet de facteurs environnementaux. Le rôle de ces facteurs est très activement étudié dans le développement de maladies chroniques comme le diabète de type 2, l'obésité ou les cancers, dont la prévalence explose à travers le monde.

Les perspectives sont également thérapeutiques, avec de premières applications qui voient le jour. "Les variations épigénétiques sont finalement assez plastiques. Elles peuvent être effacées par des traitements chimiques, ce qui ouvre d'immenses perspectives thérapeutiques. Cet espoir s'est déjà concrétisé par le développement de premières "épidrogues" pour traiter certains cancers", annonce Edith Heard.

Le dernier défi de l'épigénétique, et non des moindres, renvoie aux théories de l'évolution. "Alors que le génome est très figé, l'épigénome est bien plus dynamique", estime Jonathan Weitzman, directeur du Centre épigénétique et destin cellulaire (université Paris-Diderot-CNRS). "L'épigénome pourrait permettre aux individus d'explorer rapidement une adaptation à une modification de l'environnement, sans pour autant graver ce changement adaptatif dans le génome", postule le chercheur. L'environnement jouerait-il un rôle dans la genèse de ces variations adaptatives, comme le croyait Lamarck ? Reste à le démontrer. Epigénétique ou non, le destin est espiègle : le laboratoire qu'anime Jonathan Weitzman n'a-t-il pas été aléatoirement implanté... dans le bâtiment Lamarck ? Internet,

Auteur: Internet

Info: Rosier Florence, https://www.lemonde.fr/sciences/ 13 avril 2012

[ interférences ] [ mutation acquise ]

Commenter

Commentaires: 0

Ajouté à la BD par miguel

évolution biologique

...la révolution de la biologie moléculaire a changé le paradigme du métabolisme le faisant passer à l'information.

Auteur: Wolper Lewis

Info: La nature non naturelle de la science. Chapitre 5 (p. 93) Harvard University Press. Cambridge, Massachusetts, États-Unis. 1992

[ génétique ]

Commenter

Commentaires: 0

Ajouté à la BD par miguel

énergie source

Ce qui anime la vie est donc un peu de courant électrique, alimenté par le soleil. Toutes les complexités du métabolisme intermédiaire ne sont que dentelle autour de ce fait fondamental.

Auteur: Szent-Györgyi von N Albert

Info: Imre Csizmadia, Botond Penke and Gabor Toth (eds.) The Role of Chemistry in the Evolution of Molecular Medicine. Introduction to Submolecular Biology. Chapter 3. Elsevier Publishing Company. Amsterdam, Netherlands. 2004

[ biologie ]

Commenter

Commentaires: 0

Ajouté à la BD par miguel
Mis dans la chaine

hexapodes

Les termites sont des insectes appartenant au sous-ordre des isoptères. Ils ont une tête bulbeuse dépourvue d’yeux et un corps en forme de goutte d’eau qui est souvent translucide, laissant voir un entrelacs d’entrailles et de matière végétale en cours de digestion. Ce sont des organismes eusociaux – l’eusocialité est le mode d’organisation animale le plus évolué et se caractérise par une division du travail de reproduction entre castes fertiles et castes stériles, ainsi que par une coopération dans les soins apportés aux jeunes. Jusqu’en 2007, les isoptères étaient considérés comme un ordre à part entière. Mais des études phylogénétiques ont établi que, en dépit des apparences, les termites sont un genre de blatte, et les isoptères ont donc été classés dans l’ordre des blattoptères. Cette rétrogradation n’a pas servi la cause des termites, qui souffrent déjà de la comparaison avec d’autres insectes eusociaux : ils n’ont pas le charisme des abeilles et ont droit à moins d’égards que les fourmis, dont on admire le culte du travail et la capacité à porter de lourdes charges. Les termites ont aussi la réputation d’être des insectes destructeurs. On estime qu’aux États-Unis ils occasionnent chaque année 1,5 à 20 milliards de dollars de dégâts dans les bâtiments. Il leur arrive même de s’en prendre directement à l’argent : dans une banque indienne, en 2011, des termites ont dévoré 10 millions de roupies en billets, et deux ans plus tard, en Chine, ils ont rogné les économies d’une vieille dame qui conservait dans un tiroir 400 000 yuans enveloppés dans du plastique. On attribue à Mastotermes darwiniensis – l’espèce la plus primitive et de plus grande taille, et la plus proche de la blatte xylophage, à partir de laquelle on pense que les termites ont évolué – des exploits spectaculaires, comme la destruction complète d’une maison dont le propriétaire s’était absenté deux semaines. On devrait admirer les termites En réalité, seules 28 des quelque 2 600 espèces répertoriées de termites sont des nuisibles invasifs (si elles l’étaient toutes, nous serions dans de sales draps : les termites sont dix fois plus nombreux que les humains). Qui plus est, les termites non invasifs jouent un rôle écologique essentiel dans l’irrigation, la prévention de la sécheresse et l’enrichissement des sols. Ils pourraient également avoir été une source d’alimentation majeure pour nos ancêtres australopithèques. [...]
À défaut d’aimer les termites, on devrait les admirer. Les termitières figurent parmi les plus grandes structures bâties par des animaux non humains. Elles peuvent atteindre 10 mètres de haut, ce qui, comparé à la taille minuscule de l’insecte, équivaudrait pour nous à un immeuble deux fois plus haut que la Burj Khalifa de Dubai, qui fait 828 mètres. Les termitières sont des constructions magnifiques, à la Gaudí, avec leurs tours crénelées dans les teintes brunes, orangées et rouges. L'intérieur d’une termitière est un entrelacs complexe de tunnels et de couloirs, de chambres, de galeries et d’arches disposées en étoile et d’escaliers en colimaçon. Pour construire une termitière, il faut de grandes quantités de terre et d’eau : en l’espace d’une année, 5 kilos de termites transportent quelque 165 kilos de terre (sous forme de boulettes) et 15 000 litres d’eau (qu’ils aspirent dans leur corps). Et tout cela non pas pour se fabriquer un habitat – la colonie vit dans un nid à 1 ou 2 mètres sous la termitière – mais pour respirer. Une colonie, qui peut rassembler 1 million d’individus, possède en effet le même métabolisme qu’une vache de 400 kilos, et, comme les bovins et les humains, les termites inspirent de l’oxygène et rejettent du gaz carbonique.

Auteur: Srinivasan Amia

Info: https://www.books.fr/termites-modele-robots-armes/

[ bienfaits-méfaits ] [ idées reçues ] [ coopération animale ]

Commenter

Commentaires: 0

Ajouté à la BD par Coli Masson

biologie

L'organisme vivant se maintient dans un échange continu de composants ; le métabolisme est une caractéristique fondamentale des systèmes vivants. Nous avons, pour ainsi dire, une entité constituée de carburant qui se dépense continuellement et qui se maintient en même temps . De telles machines n'existent pas aujourd'hui.

Auteur: Bertalanffy Ludwig von

Info:

[ monade ]

Commenter

Commentaires: 0

Ajouté à la BD par miguel

déconnexion

C’est donc ainsi que les choses ses passent, on étudie la fonction du métabolisme de la plante et sa capacité à absorber les substances nutritives du sol, on écrit un livre, on obtient un doctorat en agronomie. Mais on ne demande pas si la théorie de l’assimilation va être applicable à la récolte.

Auteur: Fukuoka Masanobu

Info: Dans "La révolution d'un seul brin de paille", page 102

[ science ]

Commenter

Commentaires: 0

Ajouté à la BD par Coli Masson